Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Roman I. Zubatyuk,* Vyacheslav N. Baumer, Anatoliy L. Tatarets, Leonid D. Patsenker and Oleg V. Shishkin

Institute for Scintillation Materials, STC 'Institute for Single Crystals', National Academy of
Sciences of Ukraine, 60 Lenina ave., Kharkov 61001, Ukraine

Correspondence e-mail:
roman@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.040$
$w R$ factor $=0.101$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(Dimethylamino)pyridinium 2-butoxy-3-dicyano-methylene-4-oxocyclobut-1-en-1-olate

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{-}$, both the cation and the anion lie on a mirror plane. Three C atoms of the butyl group are disordered over two positions related by this plane. The bondlength analysis shows that the surplus negative charge of the anion is delocalized between the cyclobutene ring and the dicyanomethylene group. The 4 -dimethylaminopyridinium cation has an intermediate aromatic-quinoid structure.

Comment

According to Oswald (2000), 3,4-dibutoxy-3-cyclobutene-1,2dione, (1), when reacted with malononitrile in the presence of a tertiary amine, particularly triethylamine (TEA), yields 2-(2,3-dibutoxy-4-oxo-2-cyclobutenylidene)malononitrile, (2). This product is an important intermediate for the synthesis of squarylium dyes, which are of interest for use as red and near infrared (NIR) fluorescent labels and probes for biological and biomedical assays (Oswald, 2000; Oswald et al., 1999; Terpetschnig et al., 1993; Terpetschnig \& Lakowicz, 1993; Hamilton et al., 2000), as well as colouring agents for photoelectric conversion elements and photoelectrochemical batteries (Hiroo \& Masaki, 2000). One can also think of other potential applications of these compounds, which may take advantage of their long-wave absorption and emission. In this paper, we report that, in the presence of 4-dimethylaminopyridine instead of TEA, the reaction proceeds with elimination of a butyl group to give the title salt, (3) (Fig. 1).

Received 29 September 2004
Accepted 1 November 2004
Online 6 November 2004
indicating one butoxy group per triethylammonium cation. These data are in good agreement with the ${ }^{1} \mathrm{H}$ NMR spectrum of (3).

In the crystal structure of (3), both the cation and the anion occupy special positions on a mirror plane, so that all non-H atoms, except for the disordered butyl group, lie on this plane. Atoms C9, C10 and C11 are disordered over two positions related by the mirror plane. The $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-$ C11 fragment has the $-a p,-s c,-s c$ conformation (Table 1) (and consequently $+a p,+s c,+s c$ for the symmetry-related disordered component) The $\mathrm{C} 2=\mathrm{O} 2$ and $\mathrm{C} 3=\mathrm{O} 3$ bond lengths [1.215 (2) and 1.207 (2) \AA respectively] are in accord with the mean value for carbonyl groups ($1.21 \AA$; Bürgi \& Dunitz, 1994). A remarkably uniform bond-length distribution is observed within the cyclobutene ring, as compared to the unsubstituted and uncharged semisquaric acid (Semmingsen \& Groth, 1988). The $\mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 5$ bonds have virtually the same lengths [1.395 (3) and 1.391 (2) A $]$; those are intermediate between the mean values (Bürgi \& Dunitz, 1994) for single and double $\mathrm{C}-\mathrm{C}$ bonds (1.46 and $1.32 \AA$, respectively). Shortening of the $\mathrm{Cs} p^{2}-\mathrm{Csp}{ }^{1}$ and elongation of the Csp-N bonds occur in the dicyanomethylene group. This bond-length distribution suggests that the surplus negative charge of the anion is delocalized between two fragments with strong elec-tron-accepting properties, namely the cyclobutene ring and the dicyanomethylene group.

The cation has a distinctly quinoidal structure with nearly double $\mathrm{N} 4=\mathrm{C} 14[1.313$ (2) \AA A and shortened $\mathrm{C} 12-\mathrm{C} 13$ and C15-C16 bonds [1.360 (3) and 1.334 (3) Å, respectively; the mean values for double $\mathrm{N}=\mathrm{C}$ and aromatic $\mathrm{C}=\mathrm{C}$ bonds are 1.28 and $1.38 \AA$, Bürgi \& Dunitz, 1994]. In spite of this, the average value for the $\mathrm{N} 3-\mathrm{C} 12$ and $\mathrm{N} 3-\mathrm{C} 16$ bonds is equal to the mean value for the $\mathrm{C}_{\mathrm{ar}}=\mathrm{N}$ bonds in the pyridinium ring $(1.335 \AA)$. Therefore, we can also assume that the surplus of positive charge is delocalized mainly in the region between the two N atoms of the cation.

In the crystal structure, cations and anions are linked into ion pairs via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

For the preparation of (3), malononitrile ($330 \mathrm{mg}, 5.00 \mathrm{mmol}$) was dissolved in benzene (20 ml). 3,4-Dibutoxy-3-cyclobutene-1,2-dione [(1); $1.1 \mathrm{ml}, 5.09 \mathrm{mmol}]$ was added dropwise with stirring. 4-Dimethylaminopyridine ($600 \mathrm{mg}, 4.91 \mathrm{mmol}$) was then added slowly. The mixture was stirred at room temperature for 10 min and left overnight to crystallize at room temperature. The resulting crystalline product was filtered off, washed with benzene and diethyl ether to give crude product (3) ($1.45 \mathrm{~g}, 85 \%$). One of the crystals obtained was selected for the X-ray structural study. Analysis found: C 63.67, H $6.02, \mathrm{~N} 16.73 \%$; calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C 63.52, H $5.92, \mathrm{~N}$ $16.46 \% . \delta_{\mathrm{H}}\left(200 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): 13.52-12.96\left(1 \mathrm{H}, \operatorname{broad} s, \mathrm{NH}^{+}\right)$, $8.21(2 \mathrm{H}, m$, aromatic H), $6.98(2 \mathrm{H}, m$, aromatic H), $4.59(2 \mathrm{H}, t$, $\left.6.5 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.18\left[6 \mathrm{H}, s, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.78-1.57\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 1.48-$ $1.24\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 0.90\left(3 \mathrm{H}, t, 7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; m / z(\mathrm{FAB}-\mathrm{MS}$, glycerol): $123\left(\mathrm{DMAP} \mathrm{H}^{+}\right), 463\left(M+\right.$ DMAP H$\left.{ }^{+}\right)$. IR $v\left(\mathrm{~cm}^{-1}\right)$: 3280,3144 , 3100, 2964, 2932, 2880, 2228 (CN), 2208 (CN), 1788 (CO), 1684, 1652, $1580,1556,1464,1420,1372,1360,1340,1252,1228,1020$. UV: $\lambda_{\text {max }}$ (abs): 283, 335 nm (water). Compound (4) was prepared in an

View of the components of (3) (30% probability displacement ellipsoids). The symmetry-equivalent alternative disorder component of the butyl group is not shown. The dashed line indicates a hydrogen bond.
analogous way. Analysis found: C $63.80, \mathrm{H} 7.90, \mathrm{~N} 12.96 \%$; calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 63.93 , H $7.89, \mathrm{~N} 13.16 \%$; $\delta_{H}(200 \mathrm{MHz}$, DMSO$\left.d_{6}\right): 10.15-9.55\left(1 \mathrm{H}, \operatorname{broad} s, \mathrm{NH}^{+}\right), 4.59\left(2 \mathrm{H}, t, 6.7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.07$ $\left[6 \mathrm{H}, q, 7.4,14.5 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 1.77-1.58\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 1.48-1.26$ $\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 1.18\left[9 \mathrm{H}, t, 7.3 \mathrm{~Hz}, \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 0.90(3 \mathrm{H}, t, 7.4 \mathrm{~Hz}$, CH_{3}). IR $\nu\left(\mathrm{cm}^{-1}\right): 3516,2976,2940,2744,2684,2636,2512,2264$ (CN), 2240 (CN), 1784, 1672, 1544, 1472, 1428, 1352, 1252, 1080, 1060. UV: $\lambda_{\text {max }}$ (abs): 335 nm (water).

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{-}$
$M_{r}=340.38$
Monoclinic, $P 2_{\mathrm{d}} / m$
$a=11.513$ (3) А
$b=6.7830(17) \AA$
$c=12.176(3) \AA$
$\beta=102.94(2)^{\circ}$
$V=926.7(4) \AA^{3}$
$Z=2$

Data collection

Siemens $P 3 / P C$ diffractometer $\theta-2 \theta$ scans
Absorption correction: none 2053 measured reflections 1962 independent reflections 916 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.097$

$D_{x}=1.22 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=11-13^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=26.1^{\circ} \\
& h=-14 \rightarrow 13 \\
& k=0 \rightarrow 8 \\
& l=0 \rightarrow 15 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 98 \text { reflections } \\
& \text { intensity decay: } 3 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.101$
$S=0.82$
1962 reflections
163 parameters

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0522 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.004$
> $\Delta \rho_{\max }=0.11 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.09 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O1-C1	$1.293(3)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.395(3)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.468(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.493(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.215(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.450(3)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.207(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.391(2)$
N1-C6	$1.160(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.396(3)$
N3-C12	$1.324(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.414(3)$
N3-C16	$1.346(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.515(4)$
N4-C14	$1.313(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.360(3)$
N4-C17	$1.479(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.410(3)$
N4-C18 $1.461(3)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.418(3)$	
C1-C2	$1.448(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.334(3)$
C1-O1-C8-C9	$-155.3(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-62.2(7)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-64.9(5)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3N $\cdots \mathrm{O} 3$	0.86	2.16	$2.834(2)$	135

The $\mathrm{C}-\mathrm{C}$ bond lengths within the disordered butyl group were restrained to 1.520 (5) \AA. All H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with $U_{\text {iso }}=n U_{\text {eq }}$ (parent atom) ($n=1.5$ for the methyl groups and $n=1.2$ for the remaining H atoms). All of the methyl groups were free to rotate around the $\mathrm{C}-\mathrm{C}$ bond, thus the H atoms at C17 and C18 are disordered over the symmetry plane.

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX routine CIF UPDATE (Farrugia, 1999).

References

Bürgi, H.-B. \& Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hamilton, A. L., West, W. J., Cummins, R. M., Briggs, M. S. J. \& Bruce, I. E. (2000). US Patent No. 6140494.

Hiroo, T. \& Masaki, O. (2000). Jpn Patent No. 2000285978.
Oswald, B. (2000). New Long-Wavelength Fluorescent Labels for Bioassays. PhD thesis. University of Regensburg, Germany.
Oswald, B., Patsenker, L., Duschl, J., Szmacinski, H., Wolfbeis, O. S. \& Terpetschnig, E. (1999). Bioconjugate Chem. 10, 925-931.
Semmingsen, D. \& Groth, P. (1988). Acta Chem. Scand. Ser. B, 42, 1-6.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Terpetschnig, E. \& Lakowicz, J. R. (1993). Dyes Pigments, 21, 227234.

Terpetschnig, E., Szmacinski, H. \& Lakowicz, J. R. (1993). Anal. Chim. Acta, 282, 633-641.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

